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ABSTRACT: Clementine is a citrus fruit that has found a peculiar habitat in specific areas of Calabria, a region located in
southern Italy. Due to its peculiar characteristics it was recently awarded with protected geographical indications (PGI) from the
European Union. In this work, stepwise linear discriminant analysis (S-LDA), soft independent modeling of class analogy
(SIMCA), and partial least-squares discriminant analysis (PLS-DA) were used to build chemometric models able to protect PGI
Clementine from others of different origin. Accordingly, the concentration of 24−26 elements was determined in peel and juice
samples, respectively, obtained from Calabrian PGI clementine and from fruits cultivated in Algeria, Tunisia, and Spain. A cross-
validation procedure has shown very satisfactory values of prediction ability for both S-LDA (96.6% for juice samples and 100%
for peel samples) and SIMCA (100% for both peel and juice samples). PLS-DA models also yielded satisfactory results.
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■ INTRODUCTION
Clementine (Citrus clementina Hort. ex Tan.) is one of the most
important cultivated variety of citrus mandarins in the
Mediterranean basin. It is the result of a cross between
mandarin and bitter orange achieved in Algeria in the early 20th
century. Due to their peculiarly sweet juicy pulp and the
absence of seeds, they are recognized worldwide. Clementines
are cultivated in many countries located on different continents,
and Italy is among the major European producers. Cultivations
are located in the southern part of the country where the best
weather conditions for their growth exist. Calabria is a region of
southern Italy where the cultivation of clementines is
widespread. The peculiar pedoclimatic conditions of Calabrian
cultivation areas of clementines have contributed to develop a
product that, due to its special qualities, was awarded with
protected geographical indications (PGI) certification by the
European Union as “Clementine di Calabria”.1 The European
PGI brand was introduced with Council Regulation (EEC)
2081/92.2 It is assigned to foodstuffs with a strong regional
identity closely linked to a geographical area in at least one of
the stages of production, preparation, or processing. This
legislation was introduced with the aim of protecting products
against fraud and imitation and to protect consumers by
providing them with information on quality, organoleptic, and
nutritional characteristics of foods.
Several papers concern the beneficial health effects of citrus

fruits and citrus-derived products. Some of these properties
have been found to include anticancer, antiviral, and anti-
inflammatory activities, which are related to the presence of
antioxidants including vitamin C, carotenoids, and phenolic
compounds.3−7

Citrus juice has been the subject of many studies, most of
which have concerned development and optimization of
analytical methods for the identification of orange juice
adulteration.8−11 Other studies were carried out to determine

the geographical origin of lemon juices,12 orange juices,13 and
the discrimination of orange juices and frozen concentrate
orange juices (FCOJ) using trace element contents.14,15 A
carotenoids profile determined by HPLC coupled with
photodiode array detector was used to differentiate pure
Valencia juices from five countries.16,17 Recently, Rummel et al.
successfully applied the combination of stable isotope
abundance ratios of H, C, N, and S on 87Sr/86Sr for
geographical origin assignment of orange juices.18

Nowadays, few studies concerning the discrimination of
clementines are present in the literature. The profiles of the
flavanone-7-O-glycosides and fully methoxylated flavones
(FMFs) content of three clementine cultivars were subjected
to discriminant analysis.19 The content of antioxidant
constituents narirutin, hesperidin, and total vitamin C was
used for classifying different varieties of mandarin and orange.20

Denaturing gradient gel electophoresis (DGGE) of 16S rDNA
fragments, generated by polymerase chain reaction (PCR), was
used to characterize the bacterial flora of clementines, proving
the relationship between the bacterial communities of fruits and
their geographical origins.21

It is noteworthy from the literature that, with respect to the
use of phytochemicals, which is more affected by random
environmental changes, the multielement content of macro-
and microelements in foods clearly reflects the soil type and the
environmental growing conditions.22 Among these, a prom-
inent role is played by rare earth metals due to their less
anthropogenic presence in soil.23 Because of that, evaluation of
trace element content has been proposed to ensure a more
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reliable individuation of the geographical origin of food
samples.
“Clementine of Calabria” is a fruit known throughout the

world with a great impact on the regional and national gross
internal product. Economically driven frauds are, therefore,
surveyed because fruits produced in other countries, such as
Spain, Tunisia, and Algeria, are often introduced in the market
with the Calabria PGI brand name.24 The Consortium for the
protection of the PGI “Clementine of Calabria”25 was therefore
founded in 1998 to promote and protect the autochthon
products according to the standard UNI 22005:2008. The latter
defines the principles and specifies the requirements for the
implementation of a system of traceability in the agrifood
companies, but they hardly offer tools for identification of
origin of food products based on reliable scientific method-
ologies.
The development of analytical methods for geographical

origin identification of food products represents an important
goal to ensure organoleptic and nutritional characteristics to
consumers and to prevent unfair competition that can
eventually damage the whole agricultural sector. Several
scientific contributions are available in the literature, and a
great number of different analytical techniques and parameters
have been evaluated for geographical origin authentication
purpose.26−28 Multielement analysis has been applied to a range
of foodstuffs to develop methods for the identification of their
geographical origins.22,29 The contribution of the mass

spectrometry group of the University of Calabria in the
identification of useful markers for the traceability of foodstuffs
is documented.30−32 It has been oriented in the implementation
of multielement profiling in the geographical characterization of
olive oil, tomato, and tomato paste and the detection of buffalo
milk adulteration.33−35 Recently this approach was also
successfully applied to Tropea red onion, a product with PGI
certification.36

The capability of multielement profiling to act as a marker
for the classification of the PGI “Clementine of Calabria” is
now evaluated, and it represents, to the best of our knowledge,
the first study aiming at providing markers to protect
clementines identified with the European Union brand name.
Forty-six elements were screened by ICP-MS in 54 juice and
peel clementine samples grown according to the production
regulations of the Consortium for the protection of the PGI
“Clementine of Calabria” and in 34 juice and peel clementine
samples produced in cultivation areas not indicated in the
production regulations.
Principal component analysis (PCA) was used to perform a

preliminary inspection of the distribution of information in
data. Three supervised pattern recognition chemometric
procedures, linear discriminant analysis (LDA), soft independ-
ent model class analogy (SIMCA), and partial least-squares
discriminant analysis (PLS-DA), were applied for building
models able to discriminate between PGI and non-PGI

Figure 1. Calabria map. In black is spotlighted the cultivation areas specified in the PGI certification of “Clementine of Calabria”.
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samples. Cross-validation was used to check the reliability of
the chemometric models in terms of classification ability.

■ MATERIALS AND METHODS
Chemicals and Instrumentation. The mineralization was carried

out using acids of Suprapur grade (HNO3 (65%), H2O2 (30%), HCl
(30%), HF (40%), HClO4 (70%), and H3BO3) (Merck, Darmstadt,
Germany). All other reagents used for analysis were of analytical
reagent grade (Merck). Two multielement solutions of Ag, Al, As, Ba,
Be, Bi, Ca, Cd, Co, Cr, Cs, Cu, Fe, Ga, In, K, Li, Mg, Mn, Na, Ni, Pb,
Rb, Se, Sr, Tl, V, U, and Zn (100 mg/L, Merck) and Ce, Dy, Er, Eu,
Gd, Ho, La, Lu, Nd, Pr, Sm, Sc, Tb, Th, Tm, Y, and Yb (10 mg/L,
PerkinElmer) were used for the preparation of aqueous calibration
standard solutions after appropriate dilution. All glassware, poly-
ethylene flasks, squeezer, and tubes involved in sample preparation and
measurement process were cleaned with nitric acid (2%, v/v) by
soaking overnight and rinsed with ultrapure water prior to use.
Aqueous solutions were prepared using ultrapure water, with a
resistivity of 18.2 MΩ cm, obtained from a Milli-Q plus system
(Millipore, Bedford, MA, USA).
The sample preparation was carried out using the following system

for the microwave digestion: Anton Paar Multiwave 3000 with
programmable power control (maximum power 1400 W) and rotor
XF100 (operating pressure up to 120 bar maximum; operating
temperature, 260 °C maximum; construction material, PTFE-TFM for
the liner and seal). The element determination was carried out
utilizing an Elan DRC-e ICP-MS instrument (Perkin-Elmer SCIEX,
Canada). The sample delivery system consisted of a PerkinElmer
autosampler model AS-93 Plus with peristaltic pump and a cross-flow
nebulizer with a Scott type spray chamber. The ICP torch was a
standard torch (Fassel type torch) with platinum injector.
A solution containing Rh, Mg, Pb, Ba, and Ce (10 μg/L, Merck)

was used to optimize the instrument in terms of sensitivity, resolution,
and mass calibration.
Sampling. Clementine samples of variety ‘Comune’ with PGI

brand “Clementine of Calabria” came from four different Calabrian
cultivation zones located in the municipalities of Corigliano Calabro,
Lamezia Terme, Pizzo Calabro, and Rosarno (Figure 1).
These samples were provided by six farms and hand-harvested in

October, November, and December 2007. For each harvesting month
three significant samples, each consisting of 10 fruits and harvested
from three plants previously selected in the field, were chosen for each
farm, so a total of 54 samples were collected. Non-PGI “Clementine of
Calabria” samples came from Spain, Tunisia, and Algeria (Table 1). All
samples were immediately stored at −20 °C.

Analytical Procedure. Clementines were thoroughly washed with
tap water and rinsed with ultrapure water. Clementine juice was
obtained by hand-squeezing using a plastic squeezer to prevent metal
contamination. Each clementine juice sample was obtained from three
clementines randomly chosen among those constituting each sample,
and clementines were squeezed separately being careful to obtain the
juice from only the edible part of the fruit without including the
albedo. For each cultivation zone and harvesting month three
replicates were used in the quantitative analysis. An aliquot of

clementine juice (5.0 g) at its natural Brix value was weighed directly

into the PTFE-TFM digestion tube of the microwave system.

Digestion was performed by adding 2.5 mL of HNO3 to each sample.

The operating conditions used for the microwave digestion system are

shown in Table 2. After a mineralization process, extracts were
quantitatively transferred to a graduated polypropylene test tube and
diluted with ultrapure water to 50 mL. Blank samples were prepared
by subjecting 5 mL of ultrapure water to the same digestion procedure
used for juice samples and by adding the same mineralization reagents.

Peel samples were prepared from the same clementines used for the
preparation of the juice samples. Each clementine peel (albedo and
flavedo) was grated on a plastic kitchen grater to shred the peel
without metal contamination. For each zone and harvesting month,
three clementines were used in quantitative analysis as for juice
samples. An aliquot of shredded clementine peel (300 mg) was
weighed directly into the PTFE-TFM digestion tube of the microwave
system. Digestion was performed by adding 2 mL of HNO3 and 4 mL
of ultrapure water to each sample. The digestion was carried out using
the microwave power program shown in Table 2. Digested samples
were quantitatively transferred to a graduated polypropylene test tube,
and the volume was adjusted to 50 mL with ultrapure water. Blank
samples were prepared in a similar way as juice samples by using the
microwave conditions and mineralization reagent of peel digestion.

The quantitative determination of elements was carried out with
external standards. Ten-point calibration curves covering the range
0.1−2000 μg/L were used. Standard solutions were prepared by
diluting the multielement solutions cited under Chemicals and
Instrumentation. The concentration range for the elements Ce, Dy,
Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Sc, Sm, Tb, Th, Tm, U, Y, and Yb was
0.1−150 μg/L, whereas the concentration range for the elements Ag,
Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cs, Cu, Fe, Ga, In, K, Li, Mg, Mn,
Na, Ni, Pb, Rb, Se, Sr, Tl, V, and Zn was 0.1−2000 μg/L.

Statistical Analysis. Principal component analysis (PCA) was
performed by using the Statistica 7.1 statistical package. Classification
was carried out by three multivariate chemometric techniques: linear
discriminant analysis (LDA), soft independent modeling of class
analogy (SIMCA), and partial least squares-discriminant analysis
(PLS-DA). LDA were performed by using Statistica 7.1 (StatSoft 2005
edition), and SIMCA was executed by V-Parvus 2009,37 whereas the
PLS-DA algorithm was supported by the software package The
Unscrambler 9.1 (Camo Process As., Oslo, Norway).

■ RESULTS AND DISCUSSION

Analytical Performances. To choose the best mineraliza-
tion conditions, some preliminary tests were conducted.
Amounts of 0.3, 0.5, and 1 g of peel sample and 2.0, 5.0, and
8.0 g of juice sample were subjected to mineralization using the
microwave condition of Table 2. The mineralization mixture
was constituted by 2.5 mL of HNO3 and 3.5 mL of ultrapure
water for each juice sample and 2 mL of HNO3 plus 4 mL of
ultrapure water for each peel sample. The addition of ultrapure
water was needed to reach the minimum volume of sample that
can be mineralized (6 mL). Pressure and temperature profiles
of the mineralization and limpidity of digests were monitored

Table 1. Numbers of PGI “Clementine of Calabria” and
Non-PGI “Clementine of Calabria” Samples

cultivation zone region/state juice samples peel samples

Corigliano Calabro Calabria 18 18
Lamezia Terme Calabria 9 9
Pizzo Calabro Calabria 9 9
Rosarno Calabria 18 18
Algiers Algeria 10 10
Blida Algeria 4 4
Valencia Spain 8 8

Tunisia 12 12

Table 2. Mineralization Power Programs Used for the
Microwave Digestion of Clementine Juice and Clementine
Peel Samples

time (min)

step power (W) juice peel

1 800 10:00 15:00
2 0 10:00 10:00
3 900 10:00 15:00
4 0 30:00 35:00
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during the tests to choose the amount of sample that allows the
best sensitivity to be achieved without stressing the microwave
oven system. The best results were obtained using 0.3 g of peel
sample and 5.0 g of juice sample.
Initially, it was decided to monitor a great number of

elements including the rare earth metals because these elements
often play an important role in food authentication.23,38 The 46
elements investigated were 7Li, 9Be, 23Na, 24 Mg, 27Al, 39K,
44Ca, 45Sc, 51V, 52Cr, 53Cr, 55 Mn, 54Fe, 56Fe,58Ni, 60Ni, 59Co,
63Cu, 64Zn, 66Zn, 69Ga, 75As, 82Se, 85Rb, 88Sr, 89Y, 107Ag, 114Cd,

115In, 133Cs, 138Ba, 139La, 140Ce, 141Pr, 142Nd, 152Sm, 153Eu,
158Gd, 159Tb, 164Dy, 165Ho, 166Er, 169Tm, 174Yb, 175Lu, 205Tl,
208Pb, 209Bi, 232Th, and 238U. The determination of some of
these elements by ICP-MS is known to suffer from polyatomic
isobaric interferences. The dynamic reaction cell (DRC) is
proved to be an effective method for relieving such isobaric
interferences. It is pressurized with an appropriate gas, and
elimination or reduction of polyatomic interferences takes place
through the reaction of the interfering polyatomic species in the
incoming ion beam with the reaction gas. The formation of new

Table 3. Summary of Calibration Parameters, Limits of Detection (LODs), and Limits of Quantitation (LOQs)

juice peel

isotope calibration range (μg/L) R2 LOD (ng/g) LOQ (ng/g) LOD (ng/g) LOQ (ng/g)

Ag 107 0.1−2000 0.9999 0.507 0.939 9.54 24.5
Al 27 1−2000 0.9998 2.54 4.27 29.1 47.4
As 75 1−2000 0.9996 2.92 4.15 101 279
Ba 138 0.1−2000 0.9999 0.311 0.470 4.28 5.74
Be 9 0.1−2000 0.9999 0.482 0.82 11.4 30.4
Bi 209 1−2000 0.9999 4.14 6.29 91.1 216
Ca 44 100−2000 0.9933 823 912 7167 8314
Cd 114 0.2−2000 0.9999 1.04 1.85 23.4 55.6
Ce 140 0.1−150 0.9999 0.010 0.017 0.058 0.097
Co 59 0.1−2000 0.9999 0.067 0.109 8.27 21.1
Cr 52 0.1−2000 0.9999 0.758 1.08 1.67 2.18
Cra 52 1−2000 0.9998 3.72 8.4 10.4 18.1
Cs 133 1−2000 0.9999 0.732 1.77 7.26 20.3
Cu 63 1−2000 0.9999 3.30 4.84 91.2 227
Dy 164 0.1−150 0.9999 0.005 0.012 0.144 0.373
Er 166 0.1−150 0.9999 0.019 0.043 0.206 0.406
Eu 153 0.1−150 0.9999 0.005 0.011 0.027 0.039
Fea 54 10−2000 0.9999 22.6 31.4 81.7 95.3
Ga 69 1−2000 0.9999 0.419 0.518 1.92 2.47
Gd 158 0.1−150 0.9999 0.005 0.009 0.012 0.016
Ho 165 0.1−150 0.9999 0.003 0.008 0.049 0.116
In 115 0.1−2000 0.9999 0.111 0.156 1.46 1.92
K 39 50−2000 0.9991 184 195 3073 3243
La 139 0.1−150 0.9999 0.005 0.007 0.110 0.134
Li 7 1−2000 0.9999 0.214 0.257 5.11 9.48
Lu 175 0.1−150 0.9999 0.002 0.003 0.145 0.364
Mg 24 1−2000 0.9993 6.33 7.66 249 389
Mn 55 1−2000 0.9999 3.19 5.21 22.4 30.7
Na 23 100−2000 0.9997 37.4 64.5 843 1225
Nd 142 0.1−150 0.9999 0.003 0.006 0.005 0.011
Ni 58 0.1−2000 0.9999 0.336 0.392 1.52 2.01
Pb 208 0.1−2000 0.9999 0.076 0.123 1.96 2.85
Pr 141 0.1−150 1 0.003 0.005 0.015 0.029
Rb 85 0.2−2000 0.9999 1.18 2.74 13.4 36.6
Sc 45 5−150 0.9998 31.4 59.1 660 1541
Se 82 1−2000 0.9995 0.858 1.42 24.8 58.3
Sm 152 0.1−150 0.9999 0.010 0.023 0.051 0.096
Sr 88 0.1−2000 0.9999 0.281 0.684 7.16 11.9
Tb 159 0.1−150 0.9999 0.005 0.009 0.124 0.227
Th 232 0.1−150 0.9999 0.120 0.188 9.30 24.2
Tl 205 0.1−2000 0.9999 0.498 0.587 13.9 32.6
Tm 169 0.1−150 1 0.006 0.014 0.0699 0.138
U 238 0.1−150 0.9999 0.169 0.274 4.13 10.9
V 51 10−2000 0.9999 52.1 114 1227 3347
Y 89 0.1−150 1 0.002 0.007 0.006 0.011
Yb 174 0.1−150 0.9999 0.004 0.007 0.175 0.384
Zn 64 1−2000 0.9999 8.08 16.7 109 151

aAnalyzed in DRC mode.
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interferences is avoided by eliminating unwanted reaction
byproducts through the appropriate use of the RF value in the
reaction cell. For example, with regard to the elements of our
interest, the scandium signal at m/z 45 is affected by the
possible presence of 13C16O2

+ and 29Si16O+, the chromium
signal at m/z 53 by 40Ar13C+ and 37Cl16O+, the iron signal at m/
z 56 by 40Ca16O+, the nickel signal at m/z 58 by 42Ca16O+, the
zinc signal at m/z 64 by 48Ti16O+ and 32S2

+, the selenium signal
at m/z 80 by 40Ar40Ar+ and, finally, the europium signal at m/z
153 by 137Ba16O+. Consequently, Sc, Cr, Fe, Ni, Zn, Se, and Eu
have been monitored in both modes (standard and DRC
modes) using methane (99.996% purity) as reaction gas. The
CH4 flow rate and the RPq value were optimized using matrix
blank solution prepared with HCl (2%), HNO3 (1%), CH3OH
(1%), Ca at 20 mg/L, and Si and Ba at 50 μg/L and a matrix
blank solution spiked with Sc, Cr, Fe, Ni, Zn, and Se at 1 μg/L
and Eu at 0.1 μg/L. The best background equivalent
concentrations (BEC) were obtained at a flow rate of 0.7
mL/min for Cr, Fe, Se, and Zn and at a flow rate of 1.15 mL/
min for Sc, Ni, and Eu. The best S/N ratio was obtained with a
RPq value of 0.6 for all elements except Eu (0.5), Cr (0.7), and
Fe (0.7). The operating conditions and parameters of ICP-MS
analyses are identical to those used for analysis in an onion
traceability study.36

Limits of detection (LOD) and quantitation (LOQ) were
calculated following the directives of IUPAC and the American
Chemical Society’s Committee on Environmental Analytical
Chemistry, as

= + σS S 3LOD RB RB

= + σS S 10LOQ RB RB

where SLOD and SLOQ are the signals at the LOD and LOQ,
respectively, SRB is the signal of the mineralization blank, and
σRB is the standard deviation for the mineralization blank. The
concentrations were calculated from the standard curve. The
obtained values of LOD and LOQ in mineralized samples are
presented in Table 3.
The chemometric treatments have been applied to the data

set containing the concentration of those elements that have
shown concentration values above the LOD values. Although
the concentration values for K were above the LOD, it was not

considered in the statistical analysis because its use as fertilizer
is permitted by the production regulations. The concentrations
of 23Na, 24 Mg, 27Al, 44Ca, 52Cr, 54Fe, 55 Mn, 58Ni, 63Cu, 64Zn,
69Ga, 85Rb, 88Sr, 89Y, 138Ba, 139La, 140Ce, 141Pr, 142Nd, 152Sm,
153Eu, 158Gd, 166Er, and 208Pb in peel samples and the
concentrations of 7Li, 23Na, 24 Mg, 27Al, 44Ca, 52Cr, 54Fe, 55

Mn, 58Ni, 59Co, 63Cu, 64Zn, 69Ga, 82Se, 85Rb, 88Sr, 89Y, 138Ba,
139La, 140Ce, 141Pr, 142Nd, 152Sm, 153Eu, 158Gd, and 166Er in juice
samples were submitted to statistical analysis. Among the
elements monitored in standard and DRC modes, significant
differences have been observed in the assay of 56Fe and 52Cr.
Therefore, the statistical analysis has been carried out by means
of the data acquired in standard mode except for the chromium
in juice samples and iron in both peel and juice samples, for
which DRC values were used. The mean concentration and the
standard deviation of the elements considered in juice and peel
samples analyzed by ICP-MS can be seen in the Supporting
Information (Tables S1 and S2, respectively).

Chemometric Analysis. The data matrices containing the
concentration values (μg/kg) of the selected elements for peel
and juice samples were submitted to an unsupervised technique
such as PCA and three supervised approaches (LDA, SIMCA,
PLS-DA). PCA is a very important tool, especially in
preliminary steps of a multivariate analysis, to perform an
exploratory analysis for obtaining an overview of data and
finding patterns in complex experimental data. The supervised
pattern recognition techniques were chosen to get classification
rules for distinguishing between clementine samples grown
according the PGI production regulations and non-PGI
samples. The reliability of these classification rules was
validated through a cross-validation procedure. The samples
set was randomly divided into a training set and a validation set,
the latter containing 1/k of the samples (k is called the
cancellation group). Such a division allows for a sufficient
number of samples in the training set and a representative
number of members in the validation set considered as
unknown. The process was reiterated k times with different
random constitutions of both sets to ensure that all of the
samples were included in the validation set at least once.
Classification goodness for LDA and SIMCA was estimated in
terms of prediction ability, which is equal to the percentage of
the validation set members correctly classified. PLS-DA

Figure 2. Biplot of PC1 versus PC2 scores and loadings for clementine juice samples (A) and for clementine peel samples (B).
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prediction ability was evaluated using an external test set
constituted of samples submitted to the model as unknown.
PCA. PCA is a basic chemometric tool widely used in data

analysis. It allows the dimensionality of a data set to be reduced
and most of the information present in the original data to be
retained. PCA transforms the original variables, using an
orthogonal linear transformation, to a new set of uncorrelated
variables known as principal components (PCs). Representa-
tion of the PCs scores and loadings in a bidimensional plot can
be used as an overview of the data, pointing out patterns hidden
in the data set and finding possible correlations between
variables. The scores and loadings values of the first two PCs
for juice and peel samples are plotted in Figure 2, panels A and
B, respectively.
Juice samples of the two production areas have similar score

values on the first principal component, whereas a separation of
objects on the second PC is clear. The elements at the top of
the plot (i.e., Eu, Gd, Ce, Pr, Nd, Sm, La, and Ni) are present at
higher concentration in PGI samples, whereas clementine
samples from abroad have higher concentrations in elements
with the highest negative loading values on the PC2 (i.e., Mg,
Ca, Zn, Li, Fe, Cr, and Na). Strontium and copper, which have
loading values near zero for both considered PCs, have similar
concentrations in all clementine samples regardless of the
production zone. The four samples from the Algerian province
of Blida are characterized by higher score values on the PC1
and slightly negative on the PC2.
For peel samples, the biplot of the first two PCs, which

explain, respectively, 40.20 and 17.81% of the total variance,
shows the presence of two different clusters corresponding to
clementine samples with PGI brand and clementine samples
from abroad (Figure 2B). Also in this case, separation of the
groups corresponding to the two production areas occurs
principally for the second principal component, and the
positions of variables in the loadings plot are similar to those
observed for juice samples. Moreover, the cluster correspond-
ing to the samples from the Algerian province of Blida is again
characterized by higher negative score values on the PC1 and
slightly positive on the PC2.
LDA. LDA is a chemometric technique that defines a set of

delimiters (depending on the number of considered classes) so
that the multivariate space of the objects is divided in as many
subspaces as the number of classes. Discriminant functions are
obtained as a linear combination of descriptors that maximize
the ratio of between-class variance and minimize the ratio of
within-class variance. This chemometric tool computes a

number of orthogonal linear discriminant functions equal to
the number of classes minus one. LDA belongs to the “hard”
classification techniques. This means that even if the samples
that will be predicted by LDA did not belong to any of the
classes of the model, each object will be assigned anyway to one
of them. Moreover, each object can fall into one and only one
class because the multidimensional space is divided into many
subspaces as classes. To obtain models that have good stability,
the number of samples must be at least 3 times the number of
variables, so the application of a variables reduction technique is
needed. S-LDA permits the variables with a major discriminant
capacity to be selected, discarding redundant information. In
this study, S-LDA was used to classify clementines according to
the categories PGI (samples grown in accordance with the
production regulations) and non-PGI (samples cultivated in
zones different from those cited in the production regulations)
used as input a priori. The forward stepwise analysis performed
on juice samples (F to enter = 2.00 and F to remove = 1.00)
retained 11 elements (Table 4), allowing the number of
variables to be halved. Among the most discriminating
elements, the presence of alkali metals and alkaline earth
metals (Mg, Na, and Sr) is in agreement with other works
carried out by our research group on the geographical
traceability of oil,34 tomatoes,35 and Tropea red onions.36 On
the other hand, these results are not in agreement with those
obtained in the differentiation between frozen orange juice
from Brazil and Florida14,15 or Spain and Morocco.13 To verify
the goodness of method in terms of prediction ability, cross-
validation with cancellation group 10 was performed. The
proposed model showed a total prediction ability of 96.6%, and
misclassification involved one sample belonging to the PGI
category and two samples belonging to the non-PGI category.
For peel samples, LDA was carried out on the concentration

values of the 24 elements reported under Analytical Perform-
ances. As for juice samples, forward S-LDA has been performed
(F to enter = 0.4 and F to remove = 0.00) and four variables
have been eliminated (Al, Eu, Ni, and Pb, Table 4). The cross-
validation procedure showed a prediction ability of 100% for
each category.

SIMCA. SIMCA is a class modeling technique that builds a
class model based on the significant PCs of the category. In
SIMCA, each category is independently modeled using PCA
and can be described by a different number of principal
components. In this technique the models (one for each class)
can overlap and/or leave some regions of the multivariate space
unassigned. Unlike LDA, SIMCA is a soft modeling techniques;

Table 4. Summing of the Forward Stepwise LDA: Selected Elements for Juice Samples and the 11 Most Important Elements for
Peel Samples

juice samples peel samples

Wilks’ λ Parziale Wilks’ λ F remove p level Wilks’ λ Parziale Wilks’ λ F remove p level

Cr 0.190443 0.757903 24.27667 0.000005 Fe 0.060440 0.722102 25.78462 0.000003
Ni 0.188653 0.765096 23.33397 0.000007 Ga 0.054743 0.797263 17.03753 0.000104
Y 0.183784 0.785367 20.77007 0.000019 Cr 0.052886 0.825243 14.18822 0.000351
Mg 0.180554 0.799415 19.06946 0.000039 Ba 0.052332 0.833981 13.33755 0.000511
Gd 0.176614 0.817249 16.99496 0.000095 Ca 0.050504 0.864177 10.53040 0.001834
Sr 0.172065 0.838855 14.59965 0.000270 Sm 0.046042 0.947913 3.68158 0.059278
Cu 0.167593 0.861239 12.24492 0.000784 Ce 0.046018 0.948424 3.64352 0.060572
Na 0.166547 0.866648 11.69425 0.001011 Zn 0.045950 0.949817 3.53991 0.064254
Co 0.153686 0.939174 4.92218 0.029499 Mn 0.045762 0.953727 3.25069 0.075890
Al 0.151891 0.950269 3.97734 0.049703 Cu 0.045580 0.957539 2.97102 0.089380
Zn 0.148973 0.968887 2.44056 0.122389 La 0.045011 0.969642 2.09770 0.152185
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thereby, an object can belong to one category, to more than
one category simultaneously, or to none of the categories. An
important consequence of this feature is that SIMCA is able to
detect the number of false positives/negatives for each class.
Validation of the model can be evaluated considering not only
the prediction ability but also the sensitivity (SENS) and
specificity (SPEC).39,40 The SENS of a class is referred to the
percentage of objects belonging to the class correctly accepted
by the class model. The SPEC of a class corresponds to the
percentage of objects not belonging to the class correctly
rejected by the class model.
SIMCA was applied to the same data matrices used for LDA,

and validation was carried out by 10-fold cross-validation
procedure for both juice and peel samples. With regard to juice
samples, the model obtained was based on nine PCs for the
first class (PGI samples) and six PCs for the second class (non-
PGI samples), which explain 89.2 and 91.2% of total variance,
respectively. The SIMCA model has provided very good
prediction ability, classifying correctly all samples submitted
(Table 5).
Moreover, the SIMCA model is satisfactory in terms of mean

sensitivity (81.8%) and mean specificity (96.6%). Better results
are achieved by the SIMCA model built using a peel sample
data matrix. For these data, the two SIMCA classes are modeled
considering eight PCs for the first class (explained variance of
89.7%) and seven PCs for the second class (explained variance
of 90.2%). As for juice samples, the SIMCA model is capable of
correctly classifying all samples submitted during the cross-
validation procedure and, in this case, shows better values of
mean sensitivity (88.6%) and mean specificity (100%) (Table
5).
PLS-DA. DA carried out by PLS regression is a widely used

tool in pattern recognition. The PLS-DA algorithm allows the

establishment of a regression model between the data matrix X,
where each sample is described by a number of variables, and a
dummy variable represented by a vector Y for each class. This
vector has binary response with a value of 1 for members of
that class and 0 for nonmembers. During the calibration
process, the PLS-DA model computes the membership value of
each sample and an object is assigned to one class if its value is
above a specific prediction threshold. Indeed, because it is hard
for the predicted value to be exactly 1 or 0, values ≥0.5 are
interpreted as indicating a membership of the considered class,
whereas results ≤0.5 indicate nonmembership.41

Conversely to PCA, the PLS-DA model is able to classify
unknown samples. During PLS-DA the PCs are rotated to
generate latent variables (LVs), which represent those
directions that maximize the variance between different classes
rather than the total variance as in PCA.
PLS computes a number of latent variables with decreasing

explained variance. After a number of latent variables, the
variation explained by the others LVs can be mostly attributed
to noise. Therefore, to avoid overfitting, it is extremely
important to choose the correct number of LVs in the
calibration step of model development. An external test set is
often used to evaluate the true prediction performance of the
optimized regression model even though, in the case of PLS, it
does not seem strictly necessary.42 In this work, the whole data
set for peel and juice samples was split into two groups: a
calibration set and a test set. To have a balanced calibration set,
comparable numbers of samples belonging to each class were
included.43 The remaining samples constituted the test set (18
PGI samples and 5 non-PGI samples). The model was
validated by full cross-validation (leave one out) on the
calibration set samples. The procedure gives a first estimation
of the prediction performance. The optimum number of LVs

Table 5. Prediction Matrices for SIMCA of the Cross-Validation Procedure for Juice and Peel Clementine Samples (Rows
Represent the True Class, Columns Report the Assigned Class)

juice samples peel samples

PGI non-PGI SENS (%) SPEC (%) PGI non-PGI SENS (%) SPEC (%)

PGI 54 0 83.3 91.2 PGI 54 0 85.2 100
non-PGI 0 34 79.4 100 non-PGI 0 34 94.1 100

Figure 3. PLS-DA plot LV1 versus LV2 for clementine juice samples (A) and for clementine peel samples (B).
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was selected by evaluating the parameter root mean square
error of prediction (RMSEP) as a function of the number of
LVs. The accuracy of the PLS model developed was evaluated
as prediction ability on the basis of the correct classification of
test set samples, which were submitted as unknowns to the
regression model. The original data were column centered and
standardized by 1/standard deviation.
The weighted regression coefficients of the PLS model were

used to identify the most important variables. Their value gives
an indication of experimental variables, which have a significant
impact on the response variables. The use of a weighted
coefficient is preferred because it allows the real importance of
variables to be identified as their sizes do not depend on the
range of variation.44,45

Variables that have weighted regression coefficients with high
values play an important role in the regression model and, in
particular, positive values indicate a great deal in the
relationship with the response for the PGI category, whereas
negative values mean a great deal to the non-PGI category.46

For juice samples two LVs were chosen by which the
RMSEP function has reached the first minimum. The 2D plot
of the scores of the first three LVs is shown in Figure 3A. The
model explained 73.8% of total variance, and RMSEP and
RMSEC values were 0.28 and 0.25, respectively. The closeness
between these values can be interpreted as a lack of overfitting
and good ability of the model to describe other data well.42,47

All samples of the test set were submitted to the model, and
only two of them (one PGI sample and one non-PGI sample)
were wrongly classified. The analysis of the PLS regression
coefficients (Figure 4A) shows that copper, nickel, and
lanthanides are the most representative elements for the PGI
category, whereas magnesium and calcium are representative
for the non-PGI category.
For peel samples 2two LVs were chosen by which the

RMSEP function has reached the first minimum. The 2D plot
of the scores of the first two LVs is shown in Figure 3B.
The model explained 92% of total variance, and RMSEP and

RMSEC values were 0.16 and 0.14, respectively. Also in this
case, the PLS model shows good prediction ability because only

one sample belonging to the non-PGI category was erroneously
predicted. By looking at the regression coefficients (Figure 4B),
it is possible to observe that most of the elements (8 of 11)
characterizing PGI peel samples belong to lanthanides. This
result confirms the important role that these elements can play
in applications of food authentication.23 On the other hand,
iron and manganese are the most representative elements for
the non-PGI category. Moreover, as observed for juice data,
also for peel samples magnesium, calcium, and sodium have an
important role in the distinction of geographical origin.
In conclusion, in this work three pattern recognition

chemometric models were evaluated to ascertain the geo-
graphical origin of “Clementine of Calabria” and to develop a
reliable analytical tool for traceability purposes. Multielement
fingerprint of both peel and juice samples, suggested as
discriminative marker, was determined by a simple and rapid
method based on a mineralization process assisted by
microwaves and a subsequent ICP-MS analysis of the digested
samples. The results of chemometric analysis expressed in
terms of prediction ability show that all of the statistical
techniques involved (S-LDA, SIMCA, and PLS-DA) can be
successfully employed for traceability purposes.
In particular, all of the considered chemometric approaches

show better prediction abilities by considering the multielement
distribution of peel samples. S-LDA and SIMCA for juice
samples are capable of predicting 96.6 and 100% of sample
origin, respectively, whereas with the PLS-DA model only two
samples of an independent test set were erroneously predicted.
On the other hand, for peel samples excellent results were
achieved by S-LDA and SIMCA models (all samples correctly
classified), whereas for the PLS-DA model only one sample was
erroneously assigned. Another significant achievement of the
proposed method is represented by the observation that, for all
of the chemometric models, the classification is unaffected by
the harvesting period of the fruits.
It seems worth mentioning that the protocol here presented

could be successfully applied to determine the origin of
clementines produced in any other country and that an effort in
this direction might offer consumers scientifically based

Figure 4. Weighted regression coefficients for the variables in the PLS-DA models: clementine juice samples (A) and clementine peel samples (B).
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information, thus preventing fraudulent introduction in the
market of foods of unknown origin.
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